Steel Pipes for Hydraulics / Swaged Sleeve Fittings for Hydraulics 2 -1301 | | | | | | | | | | + | | | | | | | | |---|---|-----------------------------|--|---------------------------------|-------------------|--|---|---|---|---|---|--------------------------|--|--|--|---| | | | | | | + | | | | H | Part Nu | mber | r | Applicable | Т | | E | Reference | e Tightening by | He | x Sc | ocket | F | | l | Unit Price | | | Type | No.
6-1 | | Pipe O.D. D | R(PT) 1/8 | | 4 | Dia. G | Hand Approx. L
34.5 | H
14 | | H | 7 | + | и
28 | 1 ~ 9 pc(s |). 10 ~ 30 pcs | | | 6-2 | 2 | 6 | 1/4 | | 4 | 6.01 | 37.5 | 17 | 7 | 14 | 7 | | 33 | | | | | 8-1
8-2 | | 8 | 1/8 | | 4
6 | 3.97
6.01 | 35.5
37.5 | 17 | | 17
17 | 7 | | 29
33 | | | | | 10-2 | 2 | 10 | 1/4 | | 7 | 6.01 | 38.5 | 17 | 7 | 19 | 7 | | 33 | | | | KTGS | 10- | | 10
12 | 3/8 | | 8
7 | 6.35 | 39.0
38.5 | 19 | | 19
22 | 7 | | 34
33 | | | | | 6A- | 2 | 10.5 | 1/4 | 7 | | 6.01 | 34.5 | 17 | 7 | 19 | 7 | | 33 | | | | | 8A- | | 13.8
17.3 | 3/8 | | 9 | 6.35
8.16 | 40 | 22 | | 24
32 | 7.5
8 | | 37
41 | | | | Otto No 0 | 15A- | | 21.7 | 3/4 | | 6 | 9.53 | 48 | 32 | | 36 | 9 | | 45 | 04.04 | 104 | | Use No.6
15A is dif | A, 8A,
ferent | 1UA
fror | i, 15A wi
n those | ith the
for KT(| san
GSL | ne No
(P.1 : | o. of St
302). I |)1∟, S1
No. 8, 10 | PG_
and | 」(F
112 | 126!
have | 5). Sie
appro | eves
x. 1.4 | of N
4mm | o.6A, 8A,
protrusi | , 1UA,
on for | | improvinç | g press | sure | resistar | ice. | | | | | | | | | | | | | | Part Nu | mber | r | Applicable
Pipe O.D. D | T | Е | E ₁ | Reference | ce Tightening b | , L | | Vrench | Hex | F | l | Unit Price | e Volume Discount Rate | | Type | No. | _ | Pipe O.D. D | R(PT) | 4 | 4 | Dia. G | | 1 | | lats h | Socket H | 7 | 20 | 1 ~ 9 pc(s) |). 10 ~ 30 pcs | | | 6-1
6-2 | | 6 | 1/8 | 4 | 4.5 | | | 1 | | 17 | 14 | 7 | 23 | | | | | 8-1 | | 8 | 1/8 | 6 | 4 | 3.97 | | 1 | _ | 17 | 17 | 7 | 23 | | | | | 8-2
10-2 | | 8
10 | 1/4 | 8 | 7 | 6.01 | | 1 | | 17
17 | 17
19 | 7 | 23 | | | | KTGE | 10- | | 10 | 3/8 | 8 | 9 | 6.35 | | 19 | .5 | 19 | 19 | 7 | 24 | | | | | 12-2 | | 12 | 1/4 | 10 | 7 | 6.01 | | 20 | | 19 | 22 | 7 | 24 | | | | | 8A- | | 13.8 | 3/8 | 11 | 9 | 6.35 | | 22 | | 22 | 24 | 7.5 | 28 | - | | | | | -4 I | 17.3 1 | 1/2 | 14 | 112 | 1 8.16 | 6 44.5 | - 1 3 | U I | 2/ | 32 | 18 | 132 | 1 | | | | 15A- | -6 | 17.3
21.7 | 3/4 | 14
18 | 12
16 | 9.53 | 3 46.5 | 32 | .5 | 27
32 | 32
36 | 9 | 32
34 | | | | Use No.8.
15A is dif | 15A-
A, 10A
ferent | ., 15
fror | 21.7
A with ton those | 3/4
he san
for KT | 18
ne N | 16
o. of | 9.53
SUT | 3 46.5
, STPG | 32
(P | .5
?12 | 32
65). S | 36
Sleeve | 9
s of N | 34
lo.8/ | A, 10A,
or | | | 15A is dif | A, 10A
fferent
press | , 15
fror
sure | A with to
n those
resistar | 3/4
he san
for KT
nce. | 18
ne N
GSL | 16
lo. of
(P.1 | 9.53
SUT_
302). I | 3 46.5
, STPG | 32
(Pres app | .5
?12
prox | 32
6 5). S
c. 1.4r | 36
Sleeve
nm pr | 9
s of N
otrus | 34
lo.84
ion f | A, 10A, or | Volume Discouni
Rate | | 15A is dif
improving | A, 10A
fferent
press | , 15
from
sure | 21.7
A with to
those
resistar | 3/4
he san
for KT
nce. | 18
ne N
GSL | 16
0. of
(P.1 | 9.53
SUT_
302). I | 3 46.5
, STPG
No. 8 has | 32
(P | .5
?12
prox | 32
65). S | 36
Sleeve
nm pr | 9
s of N
otrus | 34
lo.8/
ion fo | or | | | 15A is dif | 15A-
A, 10A
fferent
g press | , 15
from
sure | A with the state of o | 3/4
he san
for KT
nce. | 18
ne N
GSL | 16
o. of
(P.1 | 9.53
SUT | 3 46.5
, STPG
No. 8 has | 32
(Pres app | 2.120
prox | 32
6 5). S
c. 1.4r | 36
Gleeve
nm pr | 9
s of Notrus | 34
lo.8/
ion fo | or
nit Price | Rate | | 15A is dif | 15A-
A, 10A
fferent
g press | , 15
from
sure | A with to
those
resistar
Applicable
Pipe O.D.
D | 3/4 he sam for KT | 18 ne N | 16
0. of
(P.1 | 9.53
SUT_
302). I | 3 46.5
, STPG
No. 8 has | 32
(Ps ap) | 2.5
P.120
prox | 32
65). S
r. 1.4r | 36
Sleeve
mm pr | 9
s of Notrus
ightenia
by Han
approx. | 34
lo.8/
ion fo | or
nit Price | Rate | | 15A is dif | A, 10A
fferent
g press
mbe | -6
i, 15
i from
er | A with tin those resistar Applicable Pipe 0.D. D | 3/4 he sam for KT nce. | 18 Ne N | 16
0. of
(P.1) | 9.53
SUT_
302). I | 3 46.5
], STPG[
No. 8 has
ocket
H | 32
(Ps app | 2.12
2.12
2.12
2.12
2.12
2.12
7 | 32
65). S
c. 1.4r | 36
Sleeve
mm pr | 9 s of Notrus | 34
lo.8/
ion fo | or
nit Price | Rate | | 15A is dif | 15A-
A, 10A
ifferent
g press
Imbe
No
6 | er | Applicable Pipe 0.D. D | 3/4 the samfor KTince. | 18 ne N | He H | 9.53
SUT (302). I | 9 46.5
, STPGE
No. 8 has
ocket
H 14 17 | 32 (P. F. 7 | 2:12:
Prox | 32
65). S
c. 1.4r | 36
Sleeve
mm pr | 9 s of Notrus
ightening Han
upprox.
51 | 34
lo.8/
ion fo | or
nit Price | Rate | | Part Nu Type KTGR | No
6
8
10
12 | er | Applicable Pipe 0.D. 6 8 | 3/4 he sam for KT nce. | 18 ne NGSL | He H | 9.53
SUT
302). I | 9 46.5
No. 8 has
ocket
H
14
17
19
22 | 322 (P. 5 5 6 6 6 6 6 6 6 6 | 2:12:
Prox | 32
65). S
(. 1.4r
2
30
3. | 36 Gleeve nm pr | ghteningy Han
ppprox.
51
52
54 | In a second seco | nit Price ~ 9 pc(s). | Rate
10 ~ 30 pcs. | | Part Nu Type KTGR | No
6
8
10
12 | er | Applicable Pipe 0.D. D Applicable Applicable Applicable Applicable | 3/4 he sam for KTince. | 18 ne N | Hee H | 9.53 SUT 302). I | 3 46.5
, STPGENO. 8 has
Pocket
H
14
17
19
22
Hex | 32 (P) (P) 7 7 7 7 7 | 2:12:
Prox | 32
65). S
(. 1.4r
2
30
3. | 36 Sleeve nm pr | 9 s of Notrus ightenin 51 52 54 54 ightenin ightenin by Hane | No.8AA | nit Price ~ 9 pc(s). | Rate 10 ~ 30 pcs. | | Part Nu Type KTGR | 15AA, 10AA, 10AAA, 10AAA, 10AAA, 10AAAA, 10AAAA, 10AAAAAAAAAA | er | Applicable Pipe 0.D. Applicable Applicable Applicable Applicable Pipe 0.D. Applicable Applicable Applicable Pipe 0.D. | 3/4 he san for KT ince. | 18 ne N | Hee H | 9.53
SUT
8302). I
144
77
77
99 | 3 46.5
, STPG
No. 8 has
ocket
H
14
17
19
22
Hex
ocket | 32 (P) (P) 7 7 7 7 7 | 7
7 | 32
65). § 65). § 63
31
31
31
31
31 | 36 Sileeve nmm pr | 9 s of Motrus ightenin joy Han | ng U L 1 | nit Price ~ 9 pc(s). | Rate
10 ~ 30 pcs. | | Part Nu Type KTGR Part Nu Type | No
6
8
10
12 | er | Applicable Pipe 0.D. D Applicable Applicable Applicable Applicable | 3/4 he sam for KTince. | 18 ne N | Hee H | 9.53
SUT
Ex Sc
11
44
7
7
7 | 3 46.5
, STPGENO. 8 has
Pocket
H
14
17
19
22
Hex | 32 (P) (P) 7 7 7 7 7 | 2.120
prox | 32
65). 8
1.4rr
2
30
31
33
33 | 36 Sileeve nm pr | 9 s of Notrus ightenin 51 52 54 54 ightenin ightenin by Hane | 34 do.8A ion for forming U dd L 1 | nit Price ~ 9 pc(s). | Rate 10 ~ 30 pcs. | | Part Nu Type KTGR | No
6
8
10
12
12
15
15
16
17
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | er | Applicable Pipe 0.D. D Applicable Pipe 0.D. D Applicable Applicable Pipe 0.D. D 6 | 3/4 he sam for KT ince. | 18 ne N | He He Mrer Flats | 9.53
SUT
XX SO2).11
44
77
77
99 | 8 46.5
3 STPG
No. 8 has
0 cket
H
14
17
19
22
Hex
0 cket | 32 (P) (P) 7 7 7 7 7 | :12:
12:
12:
77
77 | 32
65). § | 36 Sileeve nnm pr | 9 s of Notrus ightenin 51 52 54 54 ightenin by Hann Approx. 30.5 | 34 lo.8A ion for forming U 1 lo. l | nit Price ~ 9 pc(s). | Rate 10 ~ 30 pcs. | | Part Nu Type KTGR Part Nu Type | No
15A-A, 10A-A, | er | Applicable Pipe 0.D. Applicable Pipe 0.D. B Applicable Applicable Applicable B Applicable Applicable Applicable Applicable B Applicable Applicable B B Applicable B B B B B B B B B B B B B B B B B B B | 3/4 he san for KT noe. | 18 ne N | He H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9.53
SUT
XX SO2).11
44
77
77
99 | 8 46.5
3 YFGENO. 8 has
0 Cket
H
14
17
19
22
Hex
0 Cket
14
17 | 32 (P) (P) 7 7 7 7 7 | 1.5 12 12 17 17 17 17 17 17 | 32 85). \$\cdot \cdot \ | 36 Sileeve nnm pr | 9 s of Notrus ightenin by Han 51 52 54 54 54 30.5 33.5 | 34 lo.8A ion for forming U 1 lo. l | nit Price ~ 9 pc(s). | Rate 10 ~ 30 pcs. Volume Discount Rain 10 ~ 30 pcs. | | Part Nu Type KTGR Part Nu Type | 15A-A, 10A A, 10 | er | 21.7 A with t in those resistar m those resistar Applicable 0.0 D D G R R R R R R R R R R R R R R R R R | 3/4 he sam for KTI nice. | 18 ne N
GSL | Hee H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 9.53 SUT | ## 46.5 STPG J. STPG J. STPG J. STPG Hex Hex Hex Hex Hex Hex Hex Hex Hex | 322 (P) | F 7 7 7 | 32
65). \$65). \$65). \$65). \$650 | 36 Sleeve nnm pr | 9 s of Notrus ightenin 51 52 54 54 54 30.5 33.5 33.5 | In the second se | nit Price ~ 9 pc(s). | Rate 10 ~ 30 pcs. | | Part Nu Type KTGR Part Nu Type KTGLB | 15A-A, 10A A, 10 | er | 21.7 A with ti m those resistar m those resistar for the control of o | 3/4 he sam for KT/1 nce. | 18 ne N
GSL | Hee H 1 1 1 1 Wrer Flats 14 17 | 9.53 SUT | ### 46.5 46.5 3 5 7 6 6 6 6 6 6 6 6 6 | 32 (P) (P) 7 7 7 7 7 | F 7 7 7 | 32 85). \$\cdot \cdot \ | 36 Sleeve nm pr | 9 s of Notrus sightenin by Han 51 52 54 54 54 30.5 33.5 34.5 | 34 do.8/4 | or nit Price - 9 pc(s). nit Price - 9 pc(s). | Rate 10 ~ 30 pcs. Welvere Discount Rah 10 ~ 30 pcs. | | Part Nu Type KTGR Part Nu Type KTGLB | A, 10A A, 10A Afferent I press Imbe No 6 8 10 12 Imbe No 6 8 10 12 | er | 21.7 A with ti m those resistar m those resistar Applicable Pipe 0.D. D 6 8 10 12 Applicable B 10 Applicable Pipe 0.D. D 6 Applicable Pipe 0.D. D | 3/4 he sam for KTI nice. | 18 ne N
GSL | Hee Flats Wree Flats Wree Flats | 9.53 SUT | ## 46.5 decket ## 14 | 322 (P) | | 32
65). \$65). \$65). \$65). \$650 | 36 Sleeve nm pr | ghtenin by Han sightenin sighteni | 34 do.84 ion for | nit Price | Rate 10 ~ 30 pcs. Volume Discount Rate Volume Discount Rate | | Part Nu Type KTGR Part Nu Type KTGLB | A, 10A
A, 10A
Afferent
Imbee
No
6
8
10
12
Imbee
No
6
8
10 | er | 21.7 A with ti m those resistar m those resistar pipe 0.D. D 6 8 10 12 Applicable Pipe 0.D. C 6 8 10 Applicable D C Applicable D D Applicable D D D D D D D D D D D D D D D D D D D | 3/4 he san for KTI note. | 18 ne N | 160. of (P.1) Hee | 9.53
SUT
2x Sc
11
4
7
7
7
9 | 46.5 A6.5 | 322 (PF 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | = 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 32
65). \$2
.: 1.4r | 36 Sleeve nm pr | 9 s of Notrus sightenin pprox. 51 52 54 54 54 30.5 33.5 33.5 34.5 | ng U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | nit Price | Rate 10 ~ 30 pcs. Volume Discount Rate Volume Discount Rate | | Part Nu Type KTGR Part Nu Type KTGLB | 15A-A, 10A (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | er | 21.7 A with ti m those resistar Applicable Pipe 0.D. D 6 8 10 12 Applicable B 10 12 Applicable B 10 Applicable B 10 6 8 10 6 6 8 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 3/4 he sann for KTI coe. | 18 ne NGSL | 160 o. of (P.1) He H 1 1 1 Wrer Flats 14 17 17 Wre Flats 11 11 11 | 9.53
SUT | ## 46.5 STPG No. 8 has becket 14 | 322 (FF 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | - 120 prox | 32
65). \$5 . 1.4rr | 36 Sleeve nm pr | 9
s of Notrus
51
52
54
54
54
54
33.5
33.5
34.5 | ng U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | nit Price | Rate 10 ~ 30 pcs. Volume Discount Rate Volume Discount Rate | | leeve Fittings for Hydraulics | Fittings for Hydraulics Type MMaterial SSurface Treatment | | ımber | Applicable | Applical | ble _ | Hex | Hex Socket | | | _ | Tightening | Unit Price | Volume
Discount Rate | |--------------------------------|---|--|------------|-----------------------------|---------------|-----------------|--------------------|----------------|---------|---|------------|-----------------------|--------------|-------------------------------| | ers | KTGRE Main Body, Nut: S25C Trivalent Chromate | Туре | No. | Nominal Dia
of Fitting A | Pipe O. | D. E | H ₁ | Н | F | | l | by Hand
Approx. L | 1 ~ 9 pc(s). | 10 ~ 30 pcs. | | | e | | 8-6 | 8 | 6 | 4 | 14 | 14 | 7 | 3 | 39 | 49.5 | | | | | F F | | 10-6 | 10 | 6 | 4 | 14 | 14 | 7 | 4 | 10 | 50.5 | | | | | | KTGRE | 10-8 | 10 | 8 | 6 | 17 | 17 | 7 | 4 | 10 | 50.5 | | | | ina . | < TITLE | KIGHE | 12-6 | 12 | 6 | 4 | 14 | 14 | | + | 11 | 51.5 | | | | | H ₁ H ₁ | | 12-8 | 12 | 8 | 6 | 17 | 17 | _ | + | 11 | 51.5 | | | | RoHS10 | L | | 12-10 | 12 | 10 | 8 | 17 | 19 | 7 | | 11 | 52.5 | | | | lleeve Fittings for Hydraulics | Type Material Surface Treatment | Part Nu | ımher | Annlicable | Rating | Rating Cracking | | Hex Socket | | | | Tightening | Unit Price | Volume | | w Prevention Union | KTGZR Main Body, Nut: S25C Trivalent Chromate | Туре | No. | Pipe O.D. | Flow
L/min | Pressure
MPa | H ₁ | Н | F | 1 | e | by Hand
Approx. L | 1 ~ 9 pc(s). | Discount Rate
10 ~ 30 pcs. | | | l | - 71- 0 | 10-05 | | | 0.05 | | | | | | - | - 1(0) | | | | F | | 10-45 | 10 | 18 | 0.45 | 24 | 19 | 7 | 4 | 9 | 72 | | | | 1 | | KTGZR | 12-05 | | | 0.05 | | | | | | | | | | | | | 12-45 | 12 | 18 | 0.45 | 24 | 22 | 7 | 5 | 1 | 74 | | | | | H1/ H/ | Features: Fitting with a built-in reverse flow prevention structure. | | | | | | | | | | | | | | RoHS10 | _ <u> </u> | | | | | | | | | | | | | | | leeve Fittings for Hydraulics | Type Material Surface Treatment | Part Nu
Type | ımber | Applicable R | | cking | Position | Hex S | ocket | _ | _ | Tightening
by Hand | Unit Price | Volume
Discount Rate | | w Prevention Connectors | KTGZC Main Body, Nut: S25C Trivalent Chromate Sleeve : Carbon Steel - | | No. | | | ssure
IPa | of Gauge
Dia. G | H ₁ | Н | F | l | Approx. L | | 10 ~ 30 pcs. | | | · · · | | 10-05 | 10 | 0. | 05 | 0.01 | 0.4 | 10 | 7 | - 0 | E0 E | | | | Aunt | T F | KTGZC | 10-45 | 10 | 18 0. | 45 1/4 | 6.01 | 24 | 19 | 7 | 53 | 58.5 | | | | | | | 12-05 | 12 | 18 0. | 05 | 6.35 | 24 | 22 | 7 | 55 | 60 | | | | | | | 12-45 | 12 | 0. | 45 | 0.33 | 24 | 22 | 1 | 55 | 00 | | | | | | Feature | s: Fitting | with a bu | uilt-in re | everse flo | w preve | ntion st | ructure | | | | | | | RoHS10 | G_ - L | | | | | | | | | | _ | | | | | lleeve Fittings for Hydraulics | Type MMaterial Surface Treatment KTGSL Carbon Steel Trivalent Chromate | Part Nu | | | Α | | | l | ? | | - | Init Pr | ice Disc | olume
ount Rate | | e | RIGGE Calbuil Steel Invalor offuniate | Туре | No. | | | | | | | 1 | | ~ 9 pc | (s). 10 - | · 30 pcs. | | | l | | 6 | | 6 | | | 14 | | | - | | | | | | | KTGSL | 8 | 8 | | | 14 | | | ╄ | | | | | | | | | 10 | | 10 | | | 1. | | | L | | | | | | | | 12 | | 12 | | | 1 | 5 | PoHS 10 | | | | | | | | | | | | | | | | Part Nu | Part Number | | | H Hex | | Unit Price | Discount Rate | |---------|-------------|------|---------|--------|----|------------|---------------| | Type | No. | D | | Socket | | | 10 ~ 30 pcs. | | | 6 | 7.3 | M12x1.5 | 14 | 15 | | | | KTGNT | 8 | 9.3 | M14x1.5 | 17 | 15 | | | | KIGNI | 10 | 11.3 | M16x1.5 | 19 | 16 | | | | | 12 | 13.3 | M18x1.5 | 22 | 16 | | | | | | | | | | | | Swaged Sleeve Fittings are composed of a main body, a sleeve and a nut. ### [Tightening Procedure] For utilizing performance of Swaged Sleeve Fittings for Steel Pipes, use of appropriate pipe and accurate tightening of fitting are required. The following pre-tightening will make plumbing smooth and secure. (1) Pre-tightening ①Insert the pipe with nut and sleeve inserted as shown in right figure into the fitting body. Make sure that pipe end contacts abutment part. Inadequate swaging due to the - inadequate tightening may cause the pipe to pull out. - ②Tighten the nut by hand. 3 Tighten the nut with a wrench while rotating the pipe to the end of its rotation. Put a mark on this position of fitting body and the nut. - 4) Further tighten the nut by a wrench with 1-1/4 turn at this mark. (5) Loosen the nut once to see the state of the sleeve in order to confirm the following. - 1) There is some millimeter distance between pipe end and sleeve end. No substantial movement of the sleeve toward the direction of pipe axis is allowable Moving toward circumferential direction is acceptable. Full Tightening Attach the pre-tightened pipe with fitting body and tighten the nut by a wrench until you feel sudden resistance. Further tighten the nut by 1/4 turn, and tightening will be done. Make sure that the tapered end of the sleeve is facing the fitting body. If inserted backwards, pipe will not be properly swaged and may pull-off. - [Disassembly / Retightening] - Can be disassembled just by loosening the nut. However, never tighten and loosen the nut while pressurized as it is very dangerous. - 8 or more disassemblies and retightening are possible by following the Full Tightening Procedure as shown in (2). ## · Specifications (KTGZR / KTGZC) | Applicable | Pipe Dia. | Max. Operating Pressure | Operating Temperature Hange | | | | | | | | |-------------------------------------|-----------|-------------------------|-----------------------------|--|--|--|--|--|--|--| | 10-12mm | 10,12 | 3MPa | -20°C~120°C | | | | | | | | | · Specifications (Other Than Above) | | | | | | | | | | | | Applicable | Pipe Dia. | Max. Operating Pressure | Operating Temperature Range | | | | | | | | | 8mm | 8 | | | | | | | | | | | 6A | 10.5 | 50MPa | -20°C~250°C | | | | | | | | | 10,12mm | 10,12 | JUIVIPA | | | | | | | | | | 8A | 13.8 | | | | | | | | | | | 10A | 17.3 | 40MDe | | | | | | | | | ### 15A 21.7 [Applicable Pipes] - (1) JIS G 3454 Carbon Steel Pipe for Pressure Service STPG370 (2) JIS G 3455 Carbon Steel Pipe for High Pressure Service STS370 - (3) JIS G 3456 Carbon Steel Pipe for High Temperature Service STP370 (4) JIS G 3459 Stainless Steel Pipe for Plumbing SUS304TP and SUS316TP (5) Japan Fluid Power Association Standard JOHS-102 Accurate Carbon Steel Pipes for Hydraulics OST