(TECHNICAL DATA)
STRENGTH OF BOLTS, SCREW PLUGS AND DOWEL PINS
(TECHNICAL DATA)
CALCULATION OF CUBIC VOLUME

Ctrength of bolts

1) When tensile load is applied to the bolt
$\mathrm{Pt}=\sigma \mathrm{t} \times \mathrm{As} \cdots \cdots \cdots(1)$
$=\pi \mathrm{d}^{2} \sigma \mathrm{t} / 4 \cdots \cdots \cdot(2)$

Pt: Tensil load in the axial direction Kgt]
 σt : Allowable stress of bolt l [kgt/mm
$(\sigma t=\sigma b$ bsadety factor
As: Effective sectionalal area of bot $[\mathrm{mm}$]

(Eamme) Find a suitable size when a socket head cap screw receives tensile load of $\mathrm{P}=200 \mathrm{kgf}$ repeatedly (pulsating) (Socket head cap screw material : SCM435, 38~43HRC, strength class : 12.9)
From equation (1)

$$
\begin{aligned}
\mathrm{As} & =\mathrm{Pt} / \sigma \mathrm{t} \\
& =200 / 22.4
\end{aligned}
$$

$=8.9\left[\mathrm{~mm}^{2}\right]$
Find an effective sectional area greater than this value from the table at the righ.
M4 of $14.2\left[\mathrm{~mm}^{2}\right.$] will be the selection.
If fatigue strength is taken into account, M6 of allowable load 213 kgf in 12.9 should be selected.
2) Selection must be based on fatigue strength for the bolts such as the stripper bolt which receives impact load from tension. (As the above example, 200kgf load is applied. Stripper bolt material : SCM435, 33~38HRC, strength class 10.9)

From the table at the right, M8 of 318 (kgf) is found when allowable load of strength class 10.9 is over $200 \mathrm{kgf} \mathrm{f} \mathrm{Accordingly}, \mathrm{MSB10} \mathrm{having} \mathrm{M8} \mathrm{screw} \mathrm{and} \mathrm{axial} \mathrm{diameter} \mathrm{of}$ 10 mm is the selection. Use dowel pins when shearing load is applied.

Strength of screw plugs

Find allowable load P when screw plug MSW30 receives impact load
(MSW30 material : S45C, tensile strength σ b for $34 \sim 43 \mathrm{HRC}$ is $65 \mathrm{kgf} / \mathrm{mm}^{2}$.) If MSW breaks by shearing force applied
$\mathrm{P}=\tau \mathrm{t} \times \mathrm{A}$.
$=3.9 \times 107.4$
$=4190[\mathrm{kgf}]$

Find the alowable shearing force based on the core diameter of interna thread if tapping is made of soft material.

- Strength of dowel pins

Find a suitable size when a dowel pin receives 800 kg f repetitive (pulsating) shearing load. (Dowel pin material : SUJ2 • Hardness 58HRC or more)
$\begin{aligned} \mathrm{P} & =A \times \tau \\ & =\pi \mathrm{D}^{2} \tau\end{aligned}$
$D=\sqrt{(4 \mathrm{P}) /(\pi \tau)}$
$=\sqrt{(4 \times 800) /(3.14 \times 19.2)}$ $\fallingdotseq 7.3$

$$
\begin{aligned}
& \sigma \mathrm{b} \text { for yield stress of SUJ2}=120\left[\mathrm{kgf} / \mathrm{mm}^{2}\right] \\
& \begin{aligned}
\text { Allowale shearing strength } \tau & =\sigma \mathrm{bb} \times 0.0 / \text { stafety factor } \alpha \\
& =120 \times 0.8 / 5 \\
& =19.2\left[\mathrm{kgt} / \mathrm{mm}^{2}\right]
\end{aligned}
\end{aligned}
$$

For MS dowel pin, select D8 or larger size.

When larger size dowel pins are used, tools and stocks can be reduced.
The calculations shown above are only examples of finding strength. For actual calculation, various conditions, such as accuracy of inter-hole pitch, perpendicularity of holes, surface roughness, circularity, plate materials, parallelism, quenching, precision of press machine, quantity of production, and wear of tools, should be taken into account. Use these examples as a referernce for calculataing strength. (They are not guaranteed values.)

P

Avoid using the dowel pins in such a way Avoic using the dowel pins in such a
as load is applied to the screw part.

Solid	Volume V
Circular cone	$\begin{aligned} v & =\frac{\pi}{3} \mathrm{r} 2 \mathrm{~h} \\ & =1.0472 \mathrm{r} 2 \mathrm{~h} \end{aligned}$
Sphere	$\begin{gathered} V=\frac{4}{3} \pi r^{3}=4.1888 r^{3} \\ =\frac{\pi}{6} d^{3}=0.5236 d^{3} \end{gathered}$
Spherical belt	$\mathrm{V}=\frac{\pi \mathrm{h}}{6}\left(3 \mathrm{a}^{2}+3 \mathrm{~b}^{2}+h^{2}\right)$
Barrel	When circumference makes a curve equal to the circular arc, $V=\frac{\pi l}{12}\left(2 D^{2}+d^{2}\right)$ When its periphery makes a curve equal to a parabolic line, $V=0.209 \ell\left(2 D^{2} D d+1 / 4 d^{2}\right)$

-How to calculate the weight
Weight $[g]=$ Volume $\left[\mathrm{cm}^{3}\right] \times$ Density

Example : Soft stee
$\phi D=16 \quad L=50 \mathrm{~mm}$, the weight is
$\begin{aligned} \mathrm{W} & =\frac{\pi}{4} \mathrm{D} \times \text { L } \times \text { Density } \\ & =\frac{\pi}{4} \times 1.6^{2} \times 5 \times 7.85\end{aligned}$
$=\frac{\pi}{4} \times 1.6^{2} \times 5 \times 7.85$
$\fallingdotseq 79[9]$

Method for finding changes dimensions due to thermal expansion

Example : SKD11
$\phi D=2$ The volume of dimension change δ

[120

- Finding strain with Young's modulus E

〔Example〕 Find amount of stain when load $P=1000 \mathrm{~kg}$ is applied

Characteristics of Metals

Material	$\begin{aligned} & \begin{array}{l} \text { Density } \\ {\left[g / \mathrm{cm}^{3}\right]} \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Young's moduluse } \\ {\left[\mathrm{Kgt}^{2} / \mathrm{mm}^{2}\right]} \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Themal enanasion conficient } \\ {[\times 10-6 / C]} \\ \hline \end{array}$
Soft steel	7.85	21000	11.7
SKD11	7.85	21000	11.7
	8.07	23300	10.1
Cemented carbide V30	14.1	56000	6.0
Cast iron	7.3	7500~10500	$9.2 \sim 11.8$
SUS304	8.0	19700	17.3
Oxyon frec copper C1020	8.9	11700	17.6
6/4 Brass C2801	8.4	10300	20.8
Aluminum A1100	2.7	6900	23.6
Duralumin A7075	2.8	7200	23.6
Titanium	4.5	10600	8.4

